
The essence of Ruby

Wouter Borremans
0461911

November 18th, 2004

1 Preface

In this document i will give my personal view on the essence of the language
Ruby which was first introduced in 1995 and commonly used in Unix envi-
ronments. First i will have look at what Ruby exactly is and the history of
the language itself. After that i will discuss the main features of Ruby and
it’s metamodel.

2 What is Ruby?

Ruby is the interpreted scripting language for quick and easy object-oriented
programming. The language has many features to process text-files and to
perform system management tasks (Like Perl). Ruby is available for free
and makes you able to use it for free and distribute it as much if you want.

Ruby is a pure object oriented language, this means that everything in
Ruby is an object. The language has a simple syntax which is based on Eiffel
and Ada. Offcourse programming in Ruby needs programming skills, though
users state that the understanding of the Ruby syntax can be easily learned.
Ruby needs no variabele declaration (which you can compare with Basic or
QBasic of the Microsoft Corporation) which makes you able to work quickly
without worrying about variabele types etc. Ruby automatically typecasts
the variabeles.

Another great feature of Ruby is it’s great portabillity. At the moment
Ruby is able to run on many types of UNIX, DOS, Windows 95/98/Me/NT/2000/XP,
MacOS, BeOS, OS/2, etc. Ruby is most used on Linux OS based machines.
Why the name ”Ruby”?
Influenced by Perl, Matz (The creator of Ruby) wanted to use a jewel name
for his new language, so he named Ruby after a colleague’s birthstone.

1



3 The history of Ruby

The language is created by Yukihiro Matsumoto in 1993. The basic idea
of the language was to create a real object oriented based programming
language (OOL) which filled the ”holes” of Python and Perl which were
not ”real” OOL programming languages according to Yukihiro Matsumoto’s
believes.

In december 1995 the first version (0.95) was released on a Japanese
domestic newsgroup. From that point on users became more and more en-
thausiastic using the language, this made it possible to start a community in
1996. Because of origin of the author of Ruby, all the documentation which
was available was written in Japanese. As the community was growing, the
translation of the documents to English was a fact in 1997. This made the
popularity for this language even greater.

4 Ruby Features

This section will discuss some features for Ruby which i find most imporant
looking at the essence of a specific programming language.

4.1 Commandline interpreted

Ruby is commandline interpreted, this means that every line will be executed
line by line. A great advantage of this type of language is that you don’t
have to wait on the compiling of the program because you can immediately
execute it. A disadvantage of commandline interpreted programs is that
they execute at a much longer time then a precomilped program like e.g.
Pascal or C++.

4.2 Object oriented

Everything in Ruby is an object. In practise this means that for example
the number ”1” is in Ruby an instance of the class ”Fixnum”. Ruby’s
object model was carefully designed to be both complete and open for any
improvements. It has advanched features to add methods to a class -even
during runtime- .

4.3 Distributeable

Ruby is able to communicate across a network with another Ruby program.
In essence, this is not a feature which is built-in in the orgiginal package.
This functionality is build by the Ruby community. Interconnecting Ruby
programs opens a way to new projects where help of multiple systems is
needed.

2



4.4 Untyped variabeles

As mentioned earlier in this report, the variabeles of a Ruby program are
untyped. This means that the variabeles in Ruby act as placeholders, though
the data is typed in the memory itself. Languages like C++ or Pascal check
the type of the variabele at compile time. Ruby checks the type at runtime.
No variabeles have to be declared, they’re created at runtime.

4.5 Automatic memory management

One of the most important features of Ruby is automatic memory man-
agement (also known as garbage collection). In practise this means that
you don’t have to release allocated memory during runtime. No longer used
memory where variables are pointing to are automatically cleaned up by the
garbage collector. This has the following advantages:

• No memory leaks

• Less crashes and or errors which are related to memory assignment

• More efficient programming because you don’t have to worry about
memory assignment

The advantages mentioned below cause the program to run more slow at a
rate of about 10%. In practise this amount is not something to worry about
since Ruby a command line interpreted language is.

4.6 Advanced OO-concepts and features

Ruby supports several well known OO-concepts and features;

• Singleton methods are methods that are only given to a single object
(e.g. A particular instance of a class must have a specific behaviour).
These kind of methods are often used for elements of a GUI (Graphical
User Interface) where different actions need to be taken when different
buttons are pressed.

• Operator overloading makes the user able to give his own interpreta-
tion of an operator like ”==” or ”+=” etc.

• Exception handling Ruby offers two types of exception handling;

– Raise & Rescue This method raises a error message which gives
the user some more information on an exeption that happened.
This method is used form the kernel class.

– Catch & Throw This method makes you able to catch an error
before the programs exits to give an error. After that you can
continue running the program.

3



4.7 Datastructures

Ruby offers many types of datastructures such as dynamic arrays, hashes,
strings, integers, bignum, complex etc.

4.8 Other (non technical) features of Ruby

One of the most important features of Ruby is that is is freely available.
Many (online) libraries make it more easier to develop Ruby programs. Ruby
is permanently developed and continuously keeps it’s backwards compati-
bility.

Because of the fact that the language is very populair, many interfaces
have been developed to for example Python, Java and Perl. Users have de-
veloped extensions to MySQL, PSQL MSSQL etc. This makes the language
easily implementable in many organisations.

5 The metamodel of Ruby

This section describes the metamodel of Ruby. It shows the relations be-
tween the main (core) classes of Ruby.

Figure 1: Relation between Ruby core classes

Each core method will be discussed below.

• Object is the parent class of all classes in Ruby. All the methods in
this class are available to all objects. The object module mixes in
the kernel module, making the built in kernel functionality accessible
globally.

4



• Module is a collection of methods and constants. Methods in a module
may be instance methods or module methods. Methods appear as
methods in a class when the module is included, module methods do
not.

• Binding objects encapsulate the execution context at some particular
place in the code and retain this context for future use. The variables,
methods, value of self, and possibly an iterator block that can be
accessed in this context are all retained

• Continuation objects are generated by Kernel#callcc, they hold the
return address and execution context, allowing a nonlocal return to
the end of the callcc block from anywhere within a program

• Proc objects are blocks of code that have been bound to a set of local
variables. Once bound, the code may be called in different contexts
and still access those variables

• Symbol objects represent a Ruby name and is generated automatically
using the :name literal syntax.

The structure of the metamodel of Ruby showed above is quite simple.
All the classes mentioned are child classes of the parent ”Object” class. All
child classes inherit the functionallity of the parent. The object class has
operating system functionallity due to the inclusion of the kernel.

5



6 Comparison between Ruby and Perl

In this chapter i will make a short comparison between Ruby and Perl to
raise some advantages or disadvantages against eachother. To get a good
overview of the differences between the language i created a table in witch
all the important features are listed.

Ruby vs Perl Ruby Perl
Object orientation Pure Add-On / Hybrid

Static / Dynamic Typing Dynamic Dynamic
Generic Classes N/A N/A

Inheritance Single class, multiple ”mixins” Multiple
Feature Renaming Yes No

Method Overloading No No
Operator Overloading Yes Yes

Higher Order Functions Blocks Yes
Lexical Closures Yes (blocks) Yes

Garbage Collection Mark and Sweep Reference counting
Uniform Access Yes No

Class Variables / Methods Yes No
Reflection Yes Yes

Access Control public, protected, private No
Design by Contract Add-on No

Multithreading Yes No
Regular Expressions Built-in Built-in
Pointer Arithmetic No No

Language Integration C, C++, Java C,C++
Built-In Security Yes Yes (perlsec)

Capers Jones Language Level 15 15
Distributed computing Yes No

The table clearly shows some disadavantages between Ruby and Perl. In
my opinion Perl lacks to have support for several quite advanched methods
like multithreading, class variabeles or methods which are more and morey
wanted these days. This means that the designthoughts of these days meet
the daily needs of programmers all around the world. Ruby even supports
distributed computing, something perl never has heard of!

6



7 Conclusion

What makes Ruby a unique programming language? To form an opinion
about that i first have to make sure what the word ”essence” means for a
programming language. In my opion, in this case ”essence” means how the
language distinguishes itself compared to other languages.

Ruby offers powerfull and easy to use syntax. The language is build on
the ”good” of several languages which make it very easliy implementable.
Ruby distinguishes itself by being a onbject oriented language from head to
tail. Due it’s great portability it can be used in nearly all operating envi-
ronments globally available. Ruby is able to is able to communicate over
networks with other Ruby programs, this makes the language even more
interesting for enterprices and smaller companies.

Wouter Borremans, November 2004

References

[1] Ruby, The object oriented scripting language, http://www.
ruby-lang.org/en/

[2] The features of Ruby, Michael Neumann, http://www.ntecs.de/
old-hp/s-direktnet/ruby_en.html

[3] Ruby core classes, Addison Wesley Longman, http://www.
rubycentral.com/ref/

[4] Singleton methods, ,http://www.ruby-doc.org/docs/
ruby-doc-bundle/UsersGuide/rg/singletonmethods.html

[5] Programming Language comparison, Jason Voegele, http://www.
jvoegele.com/software/langcomp.html

7

http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ntecs.de/old-hp/s-direktnet/ruby_en.html
http://www.ntecs.de/old-hp/s-direktnet/ruby_en.html
http://www.rubycentral.com/ref/
http://www.rubycentral.com/ref/
http://www.ruby-doc.org/docs/ruby-doc-bundle/UsersGuide/rg/singletonmethods.html
http://www.ruby-doc.org/docs/ruby-doc-bundle/UsersGuide/rg/singletonmethods.html
http://www.jvoegele.com/software/langcomp.html
http://www.jvoegele.com/software/langcomp.html

	Preface
	What is Ruby?
	The history of Ruby
	Ruby Features
	Commandline interpreted
	Object oriented
	Distributeable
	Untyped variabeles
	Automatic memory management
	Advanced OO-concepts and features
	Datastructures
	Other (non technical) features of Ruby

	The metamodel of Ruby
	Comparison between Ruby and Perl
	Conclusion

