Distributed Systems

Wouter Borremans
0461911

22nd November 2004

1 Preface

This document describes my personal view on Distributed Systems. In this
report i will describe the meaning of several terms.

2 What is a distributed system?

Nowadays millions of computers are interconnected by a world-wide network,
also called the Internet. The Internet is not the only network that is currently
used, networks such as Mobile phone networks, corporate networks, factory
networks, campus networks and in-car networks are widely used nowadays. All
of these networks can be studied under die the heading distributed system. A
distrubuted system is a system that can be seen as one in which hardware or
software components located at networked computers communicate ad coordi-
nate their actions only by passing messages.

3 Explanation of terms

In this chapter i will discuss every term briefly. All terms are directly in relation
with a distibuted system and describe their characteristics.

3.1 Scalability

Distributed systems (DS) operate at many different scales, the range differs
from an intranet to the Internet. In case of a DS, scalability means if it will
remain effective when there is a significant increase of resources and the number
of users.

The Internet is the perfect example of a DS, the number of users and hosts
have increased dramatically. The design of scaleable DS presents the following
challenges;

e Controlling the cost of physical resources When the demand of the avail-
ability of a DS is growing, it should be possible to extend the system at
reasonable cost. It must be very easy to add new server systems to avoid
performance bottlenecks.

e Controlling the performance loss Management of data resources which
represent a huge amount of data and which importance of availability is
very high. The availability of DNS (Domain Name Server) is of a huge
importance. A great number of requests is sent to those servers. When a
single system fails, another (slave) system takes over it’s task. No or less
performance loss is now achieved. A great importance designing a DS.

e Preventing software resources running out The perfect example in this case
is the lack of free IP address space available globally. A new IP address
space had to be designed; IPv6. It is very difficult to predict the future
demand of a software resource, over-compensating for future growth may
be worse than adapting to a change when we are forced.

o Awoiding performance bottlenecks In general, algorithms should be decen-
tralized to avoid performance bottlenecks. To illustrate this point just
think of the predecessor of the Domain Name System (HOSTS.TXT) in
which the name table was kept in a single master file that could be down-
loaded by any computer that needed the file. This method works if the
number of hosts is limited, if the number of hosts grows dramaticall this
method isn’t suitable anymore. The DNS system removed this bottleneck
by partitioning the name table between servers throughout the internet
and local networks.

3.2 Openness

The openess of a computer system can be defined as the way it can be extended
and re-implemented in various ways. Looking at a DS, this means the degree
to which new resources can be added and be made available for use.

Openness cannot be achieved unless the specification is documented prop-
erly. Developers need that to be able to cooperate with each other.

The publication of interfaces is only the starting point for adding and ex-
tending services in a DS. The real challenge for the designers is to tackle the
complexity of DS consisting of many components engineered by different people.
A RFC (Request For Comment) has set a solid base for documenting standards
throughout the internet.

3.3 Heterogeneity

Nowadays the Internet enables users to access services and run applications
over a hetrogeneous collection of computers and networks. This variety and
difference applies to the following;

e Networks

Computer Hardware

Operating systems
e Programming languages

e Implementations by diffrent developers

The internet consits of many different hosts, alle running their own spe-
cific operating systems with their own standards. Though, their differences are
masked by the protocol they are communicating with. Datatypes such as integer
are respresented in different ways on different sorts of hardware.

To solve the problem regarding the different interpretation of datatypes Mid-
dleware has been introduced. Middleware applies to a software layer that pro-
vides a programming abstraction as well as masking the hetrogeneity of the
underlying networks, hardware etc.

Well known middleware is CORBA (Common Object Request Brooker) and
JAVA RMI (Remote Method Invocation). Middleware provides a uniform com-
putational model for use by programmers of servers and distributed applications.

3.4 Resource sharing

Resource sharing means the ability to use any hardware or software or data
anywhere in the system. A resource manager is needed to control access provides
naming schemes and concurrency. Resource sharing models are used to describe
how the resources are provided, how they are used and provided and how the
user interacts with it.

3.5 Fault-Tolerance

Many computer systems sometimes fail. When this happens, there is a pos-
sibility that incorrect results are produced. This can cause that processes are
stopped before they have completed the intended computation.

In DS, failures are partial. This means that some components fail while
others continue to function properly. Below a few techniques for dealing with
features;

e Detecting failures Some failures can be detected, for example the check-
sums of files. Sometimes it is very difficult or even impossible to detect
of a remote server fails or has crashed. The challenge in this case is to
manage in the presence of failures that cannot be detected but may be
suspected.

e Masking failures Some failures that have been detected can be hidden or
made less severe;

— Messages can be retransmitted when they fail to arrive

— File data can be written to a pair of disks so that if one is corrupted
, they other one may still correct.

e Tolerating failures Most of the services running on the Internet exibit
failures. Their clients can be designed to tolerate failures. In practise this
means that the users have to tolerate them as well.

e Recovery from failures Recovery involves the design of software so that
the state of permanent data can be recovered or rolled back after a server
has crashed.

e Redundancy Services can be made to tolerate failures by the use of redun-
dant compontents. (e.g. At least two routes to one destination between

3.6

any two routers on the internet or name tables of the DNS system are
replicated over more than one server)

Transparency

Transparancy is defined as the concealment from the user and application pro-
grammer of the seperation of components in a distributed system, so that the
system is perceived as a whole rather than as a collection of independent com-
ponents.

The scope of transparency is listed below;

Access transparency Enables local and remote resources to be accessed
using identical operations. This means that the user isn’t aware of differ-
ences in the definition of datatypes on a operating system.

Location transparency Enables resources to be accessed without the knowl-
edge of the location. In practise this means a user won’t notice the differ-
ence viewing a website’s mirror in the Netherlands or Germany.

Migration transparency Enables resources to be moved without affecting
the way they can be accessed througout a DS. In practise this can be a
FTP server which is moved to another location but still has the same or
another IP address. (It still has the same purpose no matter it’s location
or IP number.

Replication transparency Enables multiple instances of resources to be
used to increase reliability and performance without knowledge of the
replicas by users or application programmers. Think of the DNS system,
or a cluster of computers serving the same content.

Concurrency transparency FEnables several processes to operate concur-
rently using shared resources without interference beween them. For ex-
ample: The SNB group using the makesite tool at Firenze at the same
time, the users won’t notice that other users are using the program at the
same time.

Scalability transparency Allow the system and applications to expand in
scale without to change the system structure or application algorithms.
A system like this is operating at SARA (Beowulf cluster) which is conti-
nously expanded with extra servers to increase CPU power.

Performance transparency Makes users unaware of other (heavy load) pro-
cesses are running too. The user always experiences the same performance.
Think of QOS (Quality of Service)

Failure transparency Any process, computer or network may fail indepen-
dently of the others. Therefore each component of the system needs to be
aware of possible ways in which the components its depends on may fail.
For example multiple routes to each pair of two routers.

References

[1] Distributed Systems Concepts and Design, Addison Wesley, ISBN: 0-201-
61918-0

[2] Distributed System principles, Wolfgang Emmerich , 1997, http://www.
cs.ucl.ac.uk/staff/W.Emmerich/lectures/ds98-99/dsee3.pdf

http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/ds98-99/dsee3.pdf
http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/ds98-99/dsee3.pdf

	Preface
	What is a distributed system?
	Explanation of terms
	Scalability
	Openness
	Heterogeneity
	Resource sharing
	Fault-Tolerance
	Transparency

