
How does booting work on FreeBSD,MAC and

Gentoo Linux

Wouter Borremans

september 14, 2004

1



Contents

2



This report describes the findings of the bootprocess in three diffrent
operating systems;

• FreeBSD

• Gentoo Linux

• Macintosh

1 Preface

When a user turns his computer on, the system does not know by definition
what it has to do until the operating system is loaded. A mechanism had to
be designed to actually build a bridge from the system itself to the operating
system. This is called bootstrapping .

On Intel (x86) machines, another mechanism takes care of the booting.
The BIOS (Basic Input Output System) has enough knowledge to load and
run the MBR (Master Boot Record) and assumes that the MBR has enough
data to carry out the rest of the tasks that involved in loading an operating
system. If you only have one operating system installed on your disks then
the standard MBR will suffice. This MBR searches for the first bootable
slice on the disk, and then runs the code on that slice to load the remainder
of the operating system. If you have installed multiple operating systems
on your disks then you can install a different MBR, one that can display a
list of different operating systems, and allows you to choose the one to boot
from.

There are many bootloaders on the market at the moment, depending
on your architecture you can choose several intellligent bootmanagers that
are able to boot multiple partitions. A few examples of bootmanagers are:

• LiLo (Linux Loader)

• Yaboot (Mac)

• BootMagic (x86 architectures)

3



2 FreeBSD

The FreeBSD boot process is devided into three diffrent stages. The first
stage is handled by the MBR, the MBR is able to get the system into the
second stage. This stage will load the kernel into the memory and lets it
execute. The kernel is started and begins to probe for devices and tries to
initialize them for use. Once the kernel boot process is finished, the init(8)
is executed. This init will mount the filesystem and starts up the networking
etc. Since the practical assignment asks us to describe what happens after
the kernel loads, i will now continue in “Stage 3” .

Stage 3 loads the bootloader which is usually located in the /boot/loader.
The loader is intended as a user-friendly method for configuration, using an
easy-to-use built-in command set, backed up by a more powerful interpreter,
with a more complex command set.

Loader Program Flow During the initialization, the loader will probe for
devices and consoles. It will also figure out from which disk it is booting. It
will set variables accordingly, and an interpreter is started where user com-
mands can be passed from a script or interactively. The loader will then read
the /boot/loader.rc,this will load the kerbel selected modules (depending on
/boot/defaults/loader.conf and /boot/loader.conf ) Finally, by default, the
loader issues a 10 second wait for key presses, and boots the kernel if it is
not interrupted. If interrupted, the user is presented with a prompt which
understands the easy-to-use command set, where the user may adjust vari-
ables, unload all modules, load modules, and then finally boot or reboot.
The user can choose for a runlevel that he/she wants to load.

After this, things will be executed in user level (super user)

• sys/kern/init main.c will be run

• /sbin/init will take over, and /etc/default/rc.conf script will be run

• After this, the inlog screen appears

3 Gentoo

Once the system boots up, it tries to search for bootdevices (as mentioned
earlier in this document). After this, the bootloader will be loaded. In our
practise case the bootloader that we use is Yaboot, this is the most used
bootloader with Mac. Now, the kernel will be unpacked and the CPU can
start executing the kernel. After the kernel is loaded, it will initialize kernel
specific structures and tasks and will eventually the init process.

init The init process is now started and starts to mount the filesystems
which are defined in /etc/fstab. After this, the /etc/init.d will be started

4



and will execute several scripts. In specific order, the following steps are
executed:

• The filesystems are mounted from /etc/inittab. This is done with the
command: si::sysinit:/sbin/rc sysinit

• All scripts that have symlinks to /etc/runlevels/boot are executed.

• This is done with the command: rc::bootwait:/sbin/rcboot

• Init will how check which runlevel should be executed, it reads this
from /etc/inittab. This file contains a line like: id:3:initdefault indi-
cating a runlevel of 3.

• Init will now check what it should do with runlevel 3. Runlevel 3 is
defined as:. l3:3:wait:/sbin/rc default

• Init will now starts the services with the default arguments

• Finally, when all scripts are executed, init activates the terminals

• The terminals are activiated with lines like: c1:12345:respawn:/sbin/agetty

4 Macintosh

The boot sequence of MacOS X consists of a few steps which are executed
after each other. This section describes the steps in order they are executed.

4.1 BootROM

When de MAC is turned on, the BootROM firmware is will be executed. In
general, the BootROM itself has two main functions; initialize the present
hardware and selecting an operating system to boot.

The BootROM has to components to help it carry out it’s functions:

• Performing a Power-On Self Test
This initializes some hardware interfaces an verifies that sufficient
memory is available and in a good state.

• Open Firmware
The Open Firmware initalizes the rest of the hardware and builds
a tree with useful device information. The MacOS kernel will read
that information on starting up and use that information to continue
booting.

5



4.2 BootX

When the BootROM selects the MacOS X as the operating system, the
BootX booter is started. BootX loads the kernel environment. BootX will
eventually shows the boot image on the screen. The BootX program is
located at /System/Library/CoreServices.

While loading the kernel environment, BootX first attempts to load a
previously cached set of device drivers (mkext cache) for hardware that is
involved in the boot process. When the cache is missing or isn’t appropriate,
BootX will search for for drivers and other extensions which are important
for the boot process. (The extensions are selected depending on the OS-
BundleRequired property.)

Once the kernel and all necessary drivers which are needed for booting
are loaded, the BootX program will start the kernel initialization. The kernel
will now try to find the root device. From this point Open Firmware is not
accessible anymore.

The kernel initializes the Mach and BSD data structures and initializes
the I/O Kit. The I/O Kit links the loaded drivers into the kernel. It uses
the device tree to determine which drivers to link. Once the kernel finds the
root device, it roots BSD off of it. Finally, the kernel starts the mach init
process.

After the root filesystem is mounted, system initialization proceeds to
run the system startup items and launch the present system daemons.

4.3 System initialization

The init process is now executed . The init process is the father of all
processes and has process ID (PID) 1. It owns every other process on the
system. In principle the init process has four tasks:

• Determining which user mode the user wants (Booting from CDROM
or single-user mode)

• Running system-initialization shell scripts (/etc/rc.boot and /etc/rc)
which completes basic initialization tasks.

• Init launches the getty command. Init launches the login window
application.

• As the parent of all processes, init handles all necessary cleanup of the
system processes as they terminate.

As mentioned, the init process is the parent of all the processes. Though,
there are two kinds of processes:

• System processes are processes that are started or initialized before
the loginwindow application is executed.

6



• User processes are started afer the loginwindow application. A user
process is always associated with a particular user session.

Note that user processes are killed when the loginwindow application
logs a user out. System processes itself are only killed when the system
shuts down or reboots.

4.4 rc.boot and rc scripts

The rc.boot and rc scripts in /etc perform basic initialization tasks in a
specific order.

First the rc.boot script performs a file system consistency check and
synchronizes memory with the file system. After that, the rc script performs
the following actions:

• It starts the device-driver loader (kextd).

• It loads the mach bootstrap-based services

• It runs the update background process, which flushes the file-system
cache.

• It creates the swap file for the virtual memory system and starts the
dynamic pager.

• It launches the fix-prebinding daemon, which fixes out of date prebind-
ing information for applications on an as-needed basis.

• It Finally, the rc script starts the SystemStarter program to process
the local and system startup items.

Since MacOS X is a fact, a new boot mechanism is used; the register-
mach-bootstrap-servers to load the deamons for the current context. There
are two diffrent kinds of contexts; the startup context and the user context.
One benefit of using the register-mach-bootstrap-servers is that it registers
each daemon as a bootstrap device. This provides a tremendous preformance
advantage.

5 Conclusion

This document has mentioned several issues related to the startup proce-
dures of FreeBSD, Gentoo and MacOS X. Although the base of the systems
is the same, there are some slight diffrences in the startup process;

• Gentoo uses symlinks from /etc/rc?.d to /etc/init.d/ to start all ser-
vices

• FreeBSD uses /etc/default/rc.conf to start all services

• Mac uses the /etc/rc script to start all services

7



6 References

References

[1] http://www.faqs.org/docs/linux scratch/chapter07/usage.html

[2] http://www.freebsd.org/doc/en US.ISO8859-
1/books/handbook/boot.html

[3] http://infocom.cqu.edu.au/Units/aut99/85321/Resources/Print Re-
sources/Textbook/chap12/

[4] http://www.kevinboone.com/boot.html

[5] http://openskills.info/seminars/distro/5.htm

[6] http://developer.apple.com/documentation/MacOSX/Conceptual/BPSystemStartup/Concepts/BootProcess.html

8


